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Abstract

Regioselective formylation behavior has been found in the reaction of pyrazolo[3,4-b]pyridines and pyrazolo[1l,5-a]pyrimidines via
Vilsmeier—Haack conditions. While the 4,5- and 6,7-dihydro derivatives afforded pyrazolo[3,4-b]pyridine-5-carbaldehydes and 4,7-dihyd-
ropyrazolo[1,5-a]pyrimidine-3,6-dicarbaldehydes, respectively, the aromatic analogs rendered the pyrazolo[1,5-a]pyrimidine-3-carbalde-
hyde only, and no reaction took place at the pyrazolopyridine derivatives.
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Heterocyclic compounds provide scaffolds on which
pharmacophores can arrange to yield potent and selective
drugs. Pyrazole compounds can provide privileged scaf-
folds for the generation of target compounds for drug dis-
covery.! Hence, the synthesis and study of pyrazolo-fused
compounds have been of interest due to their wide variety
of biological and pharmacological properties. &4

The structural diversity and biological importance of
pyridines and pyrimidines have made them attractive
targets for synthesis over many years.” The 4,5-dihydro-
pyrazolo[3,4-b]pyridine and 6,7-dihydropyrazolo[l,5-al-
pyrimidine systems are a convenient models for
investigating the reactivity, chemical stability, and tauto-
merism of partially hydrogenated azoloazines. As a result,
these compounds have become interesting targets for
further modifications aimed at preparing new fused or
substituted derivatives. There is a growing interest in
formylation as an interesting strategy to form intermediate
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carboxaldehydes, due to their intrinsic pharmacological
properties and chemical reactivity.> Formylation reactions
have been described for pyrido[2,3-dJpyrimidines as a key
step to the introduction of functionalities via the intermedi-
ate carboxaldehydes.”

We have already reported some procedures for the syn-
thesis of aromatic and dihydro pyrazolo[3,4-b]pyridines
and pyrazolo[1,5-alpyrimidines by the reaction of 5-amino-
pyrazoles 1 and 2 with o, f-unsaturated ketones 3 (chalcones)
or their precursors, such as f-dimethyl-aminopropio-
phenones 4 (Mannich bases)* (Scheme 1). We report here
a specific formylation on the pyridine and pyrimidine rings,
which render pyrazolopyridine- and pyrazolopyrimidine-
carbaldehydes, respectively, only when starting from their
dihydro-derivatives 5 and 7.

Both 4,5-dihydro- and aromatic pyrazolo[3,4-b]}-
pyridines were synthesized according to the reported proce-
dure. The dihydro-derivatives were prepared and then
readily oxidized to their aromatic form with N-bromo-
succinimide in ethanol.**

To functionalize the pyridine residue by inserting a one-
carbon fragment, the formylation via Vilsmeier—Haack
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Scheme 1.

conditions was attempted, affording the expected formyl-
ation along with the aromatization of the pyridinic ring
to yield 9 (Scheme 2 and Table 1).°

In the case of the aromatic pyrazolopyridines 6, the
formation of any formylated product was not observed
and the starting material was always recovered unchanged.

Both 6,7-dihydro- and aromatic pyrazolo[l,5-a]pyrimi-
dines (7 and 8, respectively), synthesized according to a
previously reported procedure,*® were subjected to the
same formylation conditions described above for pyrazolo-
pyridines 5 and 7. Thus, when we started from the 6,7-di-
hydro-derivatives 7, a double formylation at positions 3
and 6 at the pyrazolopyrimidine system occurred to yield
pyrazolo[1,5-alpyrimidine-3,6-dicarbaldehyde 10 (Scheme
3 and Table 2).”

On the other hand, the formylation of pyrazolopyr-
imidines 8 (obtained by the oxidation of dihydroderivative
7°*) under Vilsmeier conditions (DMF-POCI;) took place
only at position 3 of the pyrazole ring, leading to the
formation of the pyrazolopyrimidine-3-carbaldehyde 11
(Scheme 3 and Table 2).® Reaction of electrophilic substitu-
tion on this position of the pyrazole ring is widely refer-
enced in the literature.’

The structure of all new compounds was determined on
the basis of their analytical and spectral data, 1D and 2D-
NMR mainly, MS and elemental analysis, which are in
agreement with their proposed structures. Single crystal
X-ray diffraction analysis of compound 10 (R = C¢Hs,

= CH;, Ar=p-CH;-C¢H4) was used to corroborate
the postulated structures.'” Based on X-ray findings, the
short intramolecular hydrogen bond interaction between
the oxygen of formyl group at C-3 and N(4)-H provides

1) POCI:/DMF; R = H, C¢Hs,

Scheme 2.

Table 1
Formylation of pyrazolo[3.4-b]pyridines systems
Compound 9
R H H H H H Ce¢Hs CgHs CgHs
R’ H OCH; ClI Br NO, H Br NO,
Yield (%) 65 67 65 75 18 66 65 68
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Table 2

Formylation of dihydropyrazolo[l,5-aJpyrimidines and pyrazolo[l,5-a]-
pyrimidines systems

R R’ Ar Yield (%)
Comp. 10 Comp. 11
H NO, 4-CIC¢Hy4 65 54
H OCH; 4-CIC¢H,y 60 60
H Cl 4-CIC¢Hy4 70 63
H Cl 4-H3CCeHy 81 50
CeHs CH; 4-H;CCeHy 65 60
CeHs CH3; 4-O,NC¢Hy 65 60
4-CICe¢Hy4 OCH; 4-CIC¢Hy4 70 70

a higher stability to compound 10 with respect to the di-
hydro analog of 9, and so precludes the further oxidation
step to the aromatic derivative.
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In conclusion, the formylation on the pyridine or pyr-
imidine rings only takes place when there is a dihydro-
derivative on the appropriate pyrazolo-fused systems.
The use of the Vilsmeier-Haack conditions has per-
mitted us to develop a fast and efficient method for the
formation of pyrazolo[3,4-b]pyridine-5-carbaldehydes, di-
hydropyrazolo[1,5-aJpyrimidine-3,6-dicarbaldehydes, and
pyrazolo[1,5-alpyrimidine-3-carbaldehydes. These novel
formylderivatives provide access to a great number of
structures for the introduction of functionalities via the
intermediate carbaldehydes.
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6. Preparation of pyrazolo[3,4-b[pyridine-5-carbaldehydes 9: To a
suspension of 1.0 mmol of 5 in 2 mL of DMF was added dropwise
200 pL (0.33 g, 2.1 mmol) of POCI; while cooling with an ice/water
bath. The reaction mixture was stirred for 30 min at rt, then the
reaction mixture was heated to 80 °C for 3 h. After cooling, 15 g of
ice was added and the mixture was stirred vigorously. The precipitate
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was filtered, dried, and recrystallized from DMF. Data for 6-(4-
chlorophenyl)-3-methyl-1-phenyl-1 H-pyrazolo[3,4-b]pyridine-5-carb-
aldehyde 9 (R = H, R’ = Cl): White solid, mp 210-212 °C (65%) 'H
NMR (400 MHz, CDCl3) 0: 2.72 (s, 3H), 7.26-7.53 (m, 5H), 7.63-8.30
(dd, 4H, J=28.81Hz), 8.76 (s, 1H), 10.10 (s, 1H). *C NMR
(100 MHz, CDCl;) d: 12.6 (CHj), 116.6 (C-3a), 124.5 (C-5), 132.0
(C-4), 145.2 (C-7a), 151.0 (C-3), 160.8 (C-6), 190.5 (C=0). EI MS:
mfz: 349/347 (M, 37/100), 321/319 (M*—CO, 6/18), 318 (19), 304
(6), 77 (5). HR-MS (EI): C,0H4CIN;O caled 347.0825, found
347.0815. Anal. Caled for CyH4CIN3;O: C, 69.07; H, 4.06; N,
12.08. Found: C, 69.24; H, 4.39; N, 12.26.
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added dropwise 200 uL (0.33 g, 2.1 mmol) of POCI; while cooling
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rt, then the reaction mixture was heated to 80 °C for 3 h. After
cooling, 15 g of ice was added and the mixture was stirred vigorously.
The precipitate was filtered, dried, and recrystallized from DMF.
Data for 2,5-di-(4-methylphenyl)-7-phenyl-4,7-dihydropyrazolo[1,5-al-
pyrimidine-3,6-dicarbaldehyde 10 (Ar=p-CH3;C¢H4, R = CgHs,
R’ =CH;): Yellow solid, mp 271-273°C (65%). 'H NMR
(400 MHz, DMSO) o: 2.33 (s, 3H, CHj, 2-aryl), 2.42 (s, 3H, CHj;,
S-aryl), 6.36 (s, 1H, H-7), 7.23 (d, 2H, Hm, 2-aryl J = 7.85 Hz), 7.27
(t, 1H, Hp, 7-aryl), 7.36 (d, 4H, 7-aryl), 7.43 (d, 2H, Hm, 5-aryl,
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dehydes 11 were obtained from compounds 8 in the reaction under the
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chlorophenyl)-5-(4-methoxyphenyl)pyrazolo[1,5-a]pyrimidine-3-carb-
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